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Abstract. Approaches to deep learning have been used all over in connection
to Automatic Speech Recognition (ASR), where they have achieved a high level
of accuracy. This has mostly been seen in Convolutional Neural Network
(CNN) which has recently been investigated in ASR. Due to the fact that CNN
has an increased network’s depth on one branch, and may not be wide enough to
work on capturing adequate features on signals of human speech. We focus on a
proposal for an architecture that is deep and wide in CNN referred to as Mul-
tipath Convolutional Neural Network (MCNN). MCNN-CTC combines three
additional paths with Connectionist Temporal Classification (CTC) objective
function, and can be defined as an end-to-end system that has the ability to fully
exploit spectral and temporal structures related to speech signals simultaneously.
Results from the experiments show that the newly proposed MCNN-CTC
structure enables a reduction in the error rate arising from the construction of
end-to-end acoustic model. In the absence of a Language Model (LM), our
proposed MCNN-CTC acoustic model has a relative reduction of 1.10%–

12.08% comparing to the traditional HMM-based or DCNN-CTC-based models
with strong generalization performance.

Keywords: Automatic Speech Recognition (ASR) � Acoustic Model (AM) �
MCNN-CTC � Connectionist Temporal Classification (CTC)

1 Introduction

Automatic Speech Recognition (ASR) is an automatic method designed to translate
human form speech content into textual form [1]. Deep learning has in the past been
applied in ASR to increase correctness [2–4], a process that has been successful. As of
late, CNN has been successful in acoustic model [5, 6]. Which is applied in ASR
combining with HMMs [5], in a way identical to the regular Deep Neural Networks
(DNNs) [7, 8], which in turn lead to a hybrid system. DNN-HMM uses a discriminant
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model to replace the GMM-HMM generation model, which takes advantage of DNN’s
powerful fitting ability to model the posterior probability of each frame. The HMM still
handles the operations in temporal modelling and decoding whereas the neural network
generates posterior probability of the corresponding state [4].

A large amount of problems arise as a result of this hybrid system, where the
modules’ training which is done separately for different modules and with a different
criteria that may certainly not be optimal in the solution of the final task. Consequently,
additional hyperparameters turning throughout all training stages are required and can
be not only time consuming but also highly laborious [9]. Contrary to the above
system, end-to-end model is proposed recently because of its simplicity of modeling
process, and also the recognition accuracy is gradually approaching the hybrid system
[10–12]. CTC is a objective function introduced by Graves as a means to simplify this
process [13, 14], which infers alignments in speech label automatically leading to an
end-to-end system. This has generated promising results that can discovery in Deep
Speech [15, 16] and EESEN [10].

We propose the MCNN model and construct the MCNN-CTC acoustic model in
combination with the CTC objective function, which obtains a significant recognition
results. Based on the CTC loss function, this paper studies the speech recognition of
small and medium datasets in detail. The merits of the MCNN-CTC include: (a) The
above acoustic model can extract more useful features, both in time dimension and
frequency axis; (b) MCNN has wider network structure, which can extract sufficient
features of speech, and has stronger nonlinear capability; (c) Thanks to the CTC loss,
MCNN-CTC can take an end-to-end training manner [17].

The rest of this paper is organized as follows. Section 2 describes the network
architecture of MCNN-CTC. A concise introduction to CTC objective function and
decoding algorithm are given in Sect. 3. We represent the experimental results in
Sect. 4 and conclude our future work in Sect. 5.

2 Multipath Convolutional Neural Networks

As we can see clearly from Fig. 1, MCNN is an augmentation of the CNN’s width, and
has the ability to extract additional detailed features from speech in terms of width as
compared to the basic extraction of high-dimensional speech features in term of depth.
Therefore, MCNN is able to increase the performance of the recognition.

The MCNN’s structure is shown in Fig. 1. The full structure of MCNN comprises
of a total of three sub-networks, extracting features of speech and concatenating them.
The calculation formulas are shown in Eq. (1)–(3):

h lð Þ ¼ r W lð Þ � h l�1ð Þ þ b lð Þ
� �

ð1Þ

In formula (1), where h(l−1) and h(l) represent two adjacent feature layers, * rep-
resents convolution calculation, and W(l) and b(l) represent weights and bias matrices
obtained from network training, respectively; W(l) is convoluted with h(l−1), and r(•)
represents the activation function. In formula (2), toutnl represents the output value of the
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l’th neuron in the n’th feature map; tinnq represents the input value of the q’th neuron in
the n’th feature map; fpool(•) is the pooling function.

toutnl ¼ fpool tinnq; t
in
n qþ 1ð Þ

� �
ð2Þ

Hl ¼ Concat hli; h
l
j; h

l
k

� �
ð3Þ

In formula (3), where hli; h
l
j; h

l
k represent the i, j, and k feature maps of three

different branches, respectively, and the Concat(•) function represents the spliced
feature map to obtain the total feature map H1 of the current layer.

3 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) [12, 13] can basically be defined as a
target function that maximizes the possibilities of any output sequence [18], which
enables this by employing a softmax output layer and summing over all likely input
sequences efficiently. It characterizes a separate output circulation P(k|t) throughout
every progression t in the input succession and an extra “blank” symbol which is the
representation for non-output. The network makes decision on whether to remove any
label at each step or not. The probability of removing or emitting the blank or label

Fig. 1. The structure of multipath convolutional neural network
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given T as length, x as input sequence and yt as output vectors, is given as follow with
k and t as index and time respectively:

P k j t; xð Þ ¼ exp ykt
� �

P
k0 yk0t
� � ð4Þ

ykt is component k of yt. Then, p is a length T representing blank indices as well as label
indices for a CTC path. P(p|x) is the probability representing the emission probabilities’
product present at each time interval:

p p j xð Þ ¼
YT
t¼1

p pt j t; xð Þ ð5Þ

There are tons of paths and ways of separating labels using blanks for any given
transcription sequence. In order to map all paths to the given transcription, one can
apply methods such as a many-to-one map w, which can be outlined as a means that
removes first the repeated labels. Then, y which is the output interpretation can be
determined by including the probabilities of all the paths mapped onto it by w:

P y j xð Þ ¼
X

p2w�1 yð Þ
P p j xð Þ ð6Þ

w a; b; c;�;�ð Þ
w a; b;�;�; cð Þ
w a; b; b;�; cð Þ

. . .

w a;�; b; b; cð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ a; b; cð Þ ð7Þ

The “crumbling together” as seen throughout different paths apparently in the
similar translation allows the utilization of unsegmented information by CTC. This is as
a result of the removal of all requirements needed to know the location in which the
input sequence occurs. When given a certain transcription y*, CTC objective function
can be minimized by training the network:

CTC xð Þ ¼ �logP y� j xð Þ ð8Þ

As a means to generate predictions, the best path decoding algorithm is applied
from to a trained model using CTC which in turns generates predictions. The highest
probability latent sequence are obtained by removing the most likely at each interval
since the model assumes that there is independence between the latent symbols given a
frame-wise case in the network. By applying r(�) to the prediction of latent sequence,
the predicted sequence can be identified as follows:
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L � r p�ð Þ ð9Þ

In this case, p* becomes the most probable concatenation formalized using p* =
ArgmaxpP(p|x). In this situation you have to consider the outcome as it is not really the
highest probable output arrangement. This sequence requires search procedures that are
approximate such as beam search, and the search for this sequence is not tractable.

4 Experiments

This section focuses on the proposed model, where we evaluate it based on the pho-
netic recognition in relation to the Thchs30 and ST-CMDS datasets. Figure 1 shows
MCNN-CTC architecture.

4.1 Data and Experimental Equipment

In order to verify the superiority of the proposed model, we test on two standard
Chinese Mandarin speech datasets, Thchs30 and ST-CMDS. For the sake of ensuring
the reliability of the experimental results, we have adopted different methods for the
two datasets. In the Thchs30 dataset, the number of training set, validation set and test
set are 10000, 893 and 2495 sentences respectively. However, in the ST-CMDS
dataset, since the original corpus did not divide the dataset, we referred to the division
method of Thchs30 dataset and randomly selected 100000 sentences as the training set,
600 sentences as the validation set, and the remaining 2000 sentences as the test set.
For the two previous datasets, there are no overlapping between the corpus. GTX-
1080Ti graphics card is used for training to ensure the smooth operation of the
experiment.

4.2 Modeling Unit and Feature Extraction

The speech recognition of Chinese speech uses the traditional method of modelling
which comprises of characters, state, phoneme, and a few phonetic methods of mod-
eling [19]. As a means of making up for the lack of phonetic modeling research, this
paper utilizes experiments with phonetic as the only method of modeling. Two major
advantages of phonetic modelling are: (a) With the Chinese dictionary having about
200 phonemes, the phonetics are about 1400; (b) Direct modelling leads to inaccurate
classification of networks due to many parameter as words in the dictionary as about
16,000 [20, 21].

We use two different data preprocessing methods for two different datasets. For the
Thchs30 dataset and the ST-CMDS dataset, we use a frame length of 25 ms and a
frame shift of 10 ms to frame the speech signal. However, it is worth noting that for the
Thchs30 dataset, we extract the 200-dimensional spectrogram as the speech feature.
Nevertheless, in the ST-CMDS dataset, 120-dimensional FBank are applied to the
speech feature with splicing one frame before and after, and the total feature dimension
is 360 dimension.
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4.3 Training and Evaluation

In order to fully advance the model, we apply Adam [22] with learning rate at 1e−2 in
training stage. The stochastic gradient descent is used for fine-tuning and has a learning
rate 1e−4. During training, batch size 32 are also used. With a 0.3 probability, dropout
[23] is applied to all layers with an exception for the layers of input and output. Applied
at the fine-tuning stage is L2 norm with coefficient 1e−5 [24]. The pool size and kernel
size are 2*2 and 3*3 respectively [25], where at the same time the predicted sequences
are acquired using the best path decoding [26].

4.4 Experimental Results of Thchs30

Table 1 shows the test results that help in determining the influence as a result of the
layers of the fully connected layer.

Table 1: 512-1422 represents the neurons in the fully connected layer as 512 and
1422, and the DCNN model utilizes two layers from the fully connected layers with the
quantity of neurons as 512-1422; MCNN makes use of the three layers of the fully
connected layer with the quantity of neurons as 512-1024-1422.

The error rate is lowest when the fully connected layer has three layers as shown in
Table 1, however, the model’s performance does not improve a lot than that of two
layers. The network parameters are also improve when the connected layers are three as
compared to when they are two. Therefore, DCNN-CTC uses two layers of fully
connected layers, but MCNN-CTC uses a three layers fully connected layer to further
classify features.

Table 1. The influence of different fully connected layers on phonetic error rate

Fully connected layer Modeling unit Number of parameters Phonetic error rate

512-1422 Phonetic 1.95 M 26.65%
1024-512-1422 Phonetic 2.22 M 26.49%

Table 2. Experimental results of different acoustic models

Modeling structure Modeling
unit

Number of
parameters

Word error
rate

Phonetic error
rate

GMM-HMM [27] Phone - 30.53% -
DNN-HMM [27] Phone - 25.16% -
BLSTM-CTC [28] Phone - 25.35% -
DCNN(7)-CTC Phonetic 1.95 M - 26.65%
DCNN(8)-CTC Phonetic 2.20 M - 25.66%
DCNN(9)-CTC Phonetic 2.25 M - 25.42%
MCNN(6)-CTC Phonetic 4.66 M - 25.37%
MCNN(7)-CTC Phonetic 4.77 M - 23.43%
MCNN(8)-CTC Phonetic 3.61 M - 24.85%
MCNN(9)-CTC Phonetic 3.72 M - 25.18%
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Table 2: MCNN(7) represents that we use three paths CNN and convolution layers
are seven. Phone and phonetic represent the modeling units of acoustic models, and we
use phonetic modeling in this paper. The training and fine-tune loss of MCNN(7)-CTC
are shown in Fig. 2(a) and (b) respectively.

The error rate is highly reduced in the testing process with a 23.43% phonetic error
rate as compared to the GMM-HMM, DNN-HMM and BLSTM-HMM, and the error
rate reduces by a 7.10, 1.73 and 1.92% respectively. It can be clearly seen from Table 2
that depth is very import for CNN, and we can come up with it development has the
following main trends: as the number of DCNN layers increases, the error rate
decreases gradually.

4.5 Experimental Results of ST-CMDS

In the experiment of the ST-CMDS dataset, in order to verify the generalization per-
formance of the models proposed in this paper, we refer to the experimental results of
Thchs30 and use DCNN(7)-CTC and MCNN(7)-CTC acoustic model for the experi-
ment. Finally, the experimental results of DCNN-CTC and MCNN-CTC for the
acoustic model are shown in Table 3.

From Table 3, Compared with the DCNN-CTC acoustic model, the MCNN-CTC
has a relative error reduction of 3.94% and 3.45% in the validation set and the test set
respectively. Moreover, thanks to the reduction in the number of convolution kernels,
the parameter amount of the MCNN-CTC acoustic model is greatly reduced, and the
parameter amount are relatively reduced by 14.10%. In view of this, the structure of

Fig. 2. Curve of Thchs30 dataset’s loss function in MCNN(7)-CTC

Table 3. Comparison of experimental results between DCNN-CTC and MCNN-CTC

Modeling
structure

Modeling
unit

Number of
parameters

Error rate of
validation

Error rate
of test

DCNN(7)-CTC Phonetic 7.80 M 23.86% 23.80%
MCNN(7)-CTC Phonetic 6.74 M 22.92% 22.97%
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MCNN proposed in this paper is applied to acoustic model with remarkable effect and
strong generalization performance.

4.6 Experimental Summary

In summary, this paper conducts a detailed study on the end-to-end acoustic model
built by combining DCNN with CTC objective function, and proposes MCNN-CTC
acoustic model which has a superior performance in the Chinese standard corpus
Thchs30 and ST-CMDS datasets. It is worth noting that, based on the experimental
results of Tables 2 and 3, we can conclude that the MCNN-CTC proposed in this paper
have greatly reduced the error rate of the model compared with the traditional DCNN-
CTC acoustic model. The best results for the Thchs30 and ST-CMDS datasets were
reduced by 12.08% and 3.45%, respectively, with reasonable experimental parameters.
Moreover, it can be vividly seen from the experimental results that the generalization
performance of the acoustic model constructed by MCNN-CTC is excellent, and
compared with the acoustic model constructed by the traditional GMM-HMM, the error
rate is greatly reduced in a exceedingly simple manner.

5 Conclusion and Future Works

In this paper, an end-to-end system for Chinese Mandarin is established, which is based
on CNN and CTC objective function. We deeply analyze the influence of different
convolution layers, pooling layers and fully connected layers on DCNN-CTC. Based
on the above acoustic model, we propose MCNN-CTC, which is combined MCNN
with CTC objective function. We can also find that data is very significant and with the
increase of data, MCNN-CTC perform much better than DCNN-CTC or hybrid system.
Further, as shown by the promising results from Thchs30 and ST-CMDS, the gener-
alization performance of MCNN-CTC is strong.

In the future, an enormous amount of research will be done on MCNN-CTC with
the purpose of building a better acoustic model. In the decoding phase, we will
incorporate Language Model to further reduce the error rate.
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